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A general multiterm representation of the phase space electron distribution function in terms of spherical
tensors is used to solve the Boltzmann kinetic equation in crossed electric and magnetic fields. The problem is
formulated for an axisymmetric cylindrical magnetron discharge with the homogeneous magnetic field being
directed axially and the electric field between the coaxial cathode and anode varying in radius only. A spherical
harmonic representation of the velocity distribution function in Cartesian coordinates becomes especially
cumbersome in the presence of the magnetic field. In contrast, the employment of a spherical tensor represen-
tation leads to a compact hierarchy of equations that accurately take into account the spatial inhomogeneities
and anisotropy of the plasma in crossed fields. To describe the spatially inhomogeneous plasma the hierarchy
of the kinetic equations is formulated in terms of the total energy and the radial coordinate. Appropriate
boundary conditions at the electrodes for the tensor expansion coefficients are obtained.
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I. INTRODUCTION

Owing to their various practical applications in creating
and etching thin films, magnetron sputtering discharges re-
main the focus of many experimental and theoretical studies.
To simulate the physical processes in magnetron discharges
various hydrodynamicf1,2g, particle-in-cell sPICd Monte
Carlo f3–5g, and hybrid methodsf6g have been developed as
well as the nonhydrodynamic methods based on the solution
of the Boltzmann nonlocal kinetic equationf7g.

A detailed description of the nonlocal nonhydrodynamic
behavior of electrons in a spatially inhomogeneous plasma
by a strict kinetic analysis can be reached by two alternative
ways: the first way is to use PIC MCCsMonte-Carlo colli-
sionsd methods, and the second way is to solve the Boltz-
mann kinetic equation by decomposition of the phase space
distribution function using orthogonal functions or small pa-
rameters. Particle simulation techniques have proved their
efficiency and flexibility for complicated configurations of
fields and plasma geometries. Their disadvantages are con-
nected mainly with large numerical expenditures required to
reduce the statistical fluctuations in order to obtain detailed
information about the velocity distribution function. Decom-
position methods are usually limited to a simple geometry
but require essentially smaller calculation expenditures and
give detailed and stable solutions.

The electron distribution function in an inert gas dis-
charge plasma is weakly anisotropic, if the ratio of the di-
rected to average velocities is small. In such cases a descrip-
tion based upon the two-term decomposition of the
Boltzmann equation is sufficient. This is the situation for the
positive column in inert gases. In the cathode region, where
the energy losses in inelastic collisions strongly exceed those
in elastic impacts, and in the anode region, where electrons
fall on the absorbing surface, the distribution becomes aniso-
tropic and multi-term expansion treatmentssor MCC meth-
odsd are required. For many molecular gases, as for ions, the

distribution function is strongly anisotropic in generalf8g.
Running a few steps forward, we note that the multiterm
analysis presented in Secs. II–V is valid for both electrons
and ions.

A comprehensive theoretical analysis of the spatially in-
homogeneous Boltzmann kinetic equation in electric and
magnetic fields is given in Refs.f9,10g using Cartesian ten-
sors to decompose the phase space distribution function.
However, direct applications of these theories seemed impos-
sible. Robson and Nessf11g suggested decomposing the dis-
tribution function and the Boltzmann kinetic equation in a
spherical harmonics series in velocity space, with the expan-
sion coefficients being the spherical tensors. An infinite hier-
archy of equations for the tensor coefficients was obtained
for electric f11g and magnetic fieldf12g situations and ap-
plied then to hydrodynamic description of charged-particle
swarmsf13,14g.

In a recent paperf15g the multiterm theoryf11g was re-
formulated and generalized to nonhydrodynamic plasma
conditions. Chains of equations for the distribution function
expansion coefficients in the presence of electric field and
gradients were obtained for the plane, spherical, and cylin-
drical geometries. This formed the basis for nonhydrody-
namic nonlocal multiterm studies of low-temperature plas-
mas.

In the present study the multiterm spherical tensor repre-
sentation developed inf15g for cylindrical discharges is ex-
tended, using the results of Ref.f12g, to include a magnetic
field. This nonhydrodynamic theory is used to describe an-
isotropic phenomena in a cylindrical magnetron discharge in
an axially uniform magnetic field and a radially nonuniform
electric field. The obtained hierarchy of the kinetic equations
for the tensor expansion coefficients of the electron distribu-
tion function in crossed electric and magnetic fields accu-
rately takes into account the spatial inhomogeneities of
plasma, contains a reasonable number of equations, and can
be solved numerically. Macroscopic quantities including sec-
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ond and third rank tensors for momentum and energy fluxes
are discussed. The important problem of appropriate setting
of boundary conditions for expansion coefficients with even
and odd indicesl is considered for the cylindrical geometry
and the tensor formalism used. In the following paper the
general theory developed here is applied to a real magnetron
discharge in argon, and the anisotropy visualizations are il-
lustrated on particular examples.

II. THE BASIC EQUATIONS

The Boltzmann kinetic equation for the phase space dis-
tribution function fsr ,v ,td of charged particles has the fol-
lowing form:

f]t + v · ]r + sa + v 3 Vd · ]vgfsr ,v,td = − Jsfd, s1d

where a=eE /ma is the acceleration of a particle with the
mass ma and chargee in the electric field E, and V
=eB /ma is the frequency of the cyclotron rotation in the
magnetic fieldB. The collision operatorJ characterizes the
rate of change of the functionf due to collisions of charged
particles with neutral atoms. The plasma is assumed to be
weakly ionized, so that the collisions between charged par-
ticles are negligible.

The multiterm representationf11g of the Boltzmann equa-
tion starts with the following decomposition of the phase
space distribution functionfsr ,v ,td in terms of spherical har-
monics in velocity space with the basis of spherical coordi-
natesv=sv ,wv ,uvd:

fsr ,v,td = o
l=0

`

o
m=−l

l

fm
sldsr ,v,tdYm

flgsv/vd, s2d

where l =0,1,2. . . ,̀ , m=−l , . . . ,l. According to the tensor
formalism of Fano and Racahf11,16g a standard tensorfm

sld is
the complex conjugate of the contrastandard irreducible ten-
sor fm

flg of rank l whose 2l +1 objects transform under rota-
tions of the coordinate frame like the spherical harmonics

Ym
flgsv/vd = i ls− 1dsm+umud/2F s2l + 1dsl − umud!

4psl + umud! G1/2

3 Pl
umuscosuvdeimwv,

with the associated Legendre functions defined by

Pl
umuscosuvd =

s− 1dl

2ll!
ssinuvdumu dl+umu

d cosuv
l+umu s1 − cos2 uvdl .

The spherical components of an arbitrary vectorb can be
written in terms of the spherical harmonics as

bm
s1d =Î4p

3
bYm

s1dsb/bd, m= 0, ± 1. s3d

The spherical components of the velocity vector

v0
s1d = − ivP1

0scosuvd,

v1
s1d = ivP1

1scosuvde−iwv/Î2,

v−1
s1d = − ivP1

1scosuvdeiwv/Î2

are related to the Cartesian basis of configuration space
sx,y,zd by

vz = v cosuv = iv0
s1d,

vx = v sinuv coswv = − ifv1
s1d − v−1

s1dg/Î2,

vy = v sinuv sinwv = fv1
s1d + v−1

s1dg/Î2,

and to the basis of cylindrical coordinatessr ,w ,zd by

vr = vx cosw + vy sinw

= − ifv1
s1deiw − v−1

s1de−iwg/Î2

=
v
2

P1
1scosuvdse−iswv−wd + eiswv−wdd, s4d

vw = − vx sinw + vy cosw

= fv1
s1deiw + v−1

s1de−iwg/Î2

= i
v
2

P1
1scosuvdse−iswv−wd − eiswv−wdd, s5d

vz = vz = iv0
s1d = vP1

0scosuvd. s6d

According to papers by Robson and Nessf11,12g, decom-
position of the Boltzmann equation using the multiterm rep-
resentation off in the form of expansions2d is performed in
the following way.

The presence of a magnetic field is described by the op-
erator L =v3]v f12g, which satisfies the identitysv
3Vd ·]v=−V ·L . After substitution of expansions2d into the
kinetic equations1d, multiplication on the left by the com-
plex conjugate spherical harmonicYm

sldsv /vd, and integration
over all directions of velocity spacev /v, the following infi-
nite hierarchy of equations for the coefficientsfm

sld is ob-
tained:

]t fm
sld + o

l8m8m

sl8m81mulmdklivf1gil8lGm
s11dfm8

sl8d

+ o
l8m8m

sl8m81mulmdkli]v
f1gil8lam

s1dfm8
sl8d

− o
l8m8m

Vm
s1dsl8m81mulmdkliLf1gil8lfm8

sl8d

= − Jlsfm
sldd. s7d

Here,Gm
s11d, am

s1d, andVm
s1d are the gradient operator, the ac-

celeration due to the electric field, and the cyclotron fre-
quency in irreducible tensor notation, the values in parenthe-
ses are the Clebsch-Gordan coefficients and the values in
angular brackets are the reduced matrix elements. The right
hand side of Eq.s7d contains the spherical componentsJl of
the collision operator. Summation indices follow the rules
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l8 = l ± 1, m8 = m− m, m = 0, ± 1.

The hierarchy of equationss7d can be applied to hydrody-
namic or nonhydrodynamic situations and used for any con-
figuration of electric and magnetic fields. The Clebsch-
Gordan coefficientssl8m81m u lmd have a simple form and are
tabulated, for instance, in Ref.f17g. The reduced matrix ele-
ments were calculated inf11,12g. Further simplification of
Eq. s7d is connected with the choice of the form of expansion
coefficientsfm

sld with respect to discharge geometry and field
configuration.

III. APPLICATION TO CYLINDRICAL GEOMETRY OF
MAGNETRON DISCHARGE

Cylindrical geometry of the magnetron discharge under
considerationsFig. 1d assumes rotational symmetry about the
axis of the cylinder and the absence of azimuth fields and
gradients. Radial electric field and gradients provide a pre-
ferred directionr / r in velocity space.

As was shown in Ref.f15g, in this case the phase space
distribution function must have the property

fsr ;v;td = fsr,z;v,uv,wv − w;td, s8d

i.e., it must depend on the difference of the azimuth anglewv
in velocity spacev=sv ,uv ,wvd and the azimuth anglew in
configuration space with cylindrical coordinatesr =sz,r ,wd.
This reflects the invariance of the distribution shape with
respect to rotations about the cylinder axis. The tensor de-
composition coefficientsfm

sld by analogy tof15g will be rep-
resented in the form

fm
sldsv,r,wd = Nl,mFl,msv,rde−imw, s9d

with the factor

Nl,m = s− idls− 1dsm+umud/2S 4psl + umud!
s2l + 1dsl − umud! D

1/2 1

2umu

being extracted for convenience purposes. The phase space
distribution function takes the representation

f = o
l=0

`

o
m=−l

l

Fl,msr,z;v;tdPl
umuscosuvdeimswv−wd 1

2umu s10d

and possesses the angular dependence prescribed by Eq.s8d.
Expressions10d differs from the corresponding equation

fEq. s14dg in Ref. f15g by the factors2umud−1, which results
below in a more physical form for the integrals denoting the

macroscopic transport coefficients. Another important dis-
tinction is that here the expansion coefficientsFl,m are com-
plex quantities in contrast tof15g, where these functions
were real.

The mathematical proof of the validity of representation
s9d for a cylindrical discharge in axial magneticBz and axi-
symmetric electricE=Ez+Er fields is given in the Appendix.
Explicit expression for the tensor coefficientsfm

sld fsee Eq.
sA4d and consequences belowg requires the following prop-
erties for the coefficientsFl,m.

s1d The expansion coefficientsFl,m andFl,−m are the com-
plex conjugate functions:

ResFl,md = ResFl,−md,

ImsFl,md = − ImsFl,−md. s11d

s2d ImsFl,md=0, if B=0, independently of the electric field
direction.

s3d In crossedEr ,Bz field configurationssee Fig. 1d

Fl,m = 0 unlessl + m= even. s12d

The propertys11d can be obtained directly from Eq.s10d by
requiring the reality of the phase space distribution function
f. The propertys12d reflects the invariance of the distribution
function under the transformationvz→−vz and the fact that
the magnetic field does not influence charged-particle motion
in the direction parallel to the field.

The tensor components of the gradient operatorGm
s11d and

vectors of electricam
s1d and magneticVm

s1d fields in Eq.s7d are
given in Table I for cylindrical coordinates in the particular
case when the electric field and gradients have radial com-
ponents only and the uniform magnetic field is directed along
the axis of the cylinder. These tensor components were cal-
culated inf11,12,15g for Cartesian, cylindrical, and spherical
coordinates for various field directions.

The reduced matrix elements from Eq.s7d are shown in
Table II. In the case of the axially directed magnetic field the
magnetic field term is diagonal with respect to the indexl.

The steady-state regime of the discharge operation will be
considered hereinafter. Substitution of decompositions9d
into Eq. s7d, using explicit values for the Clebsch-Gordan
coefficients, applying the summation rules and taking into
account the properties of the tensor coefficients and the re-
duced matrix elements listed in Tables I and II results in the
following hierarchy:

FIG. 1. Schematic representation of an axially homogeneous
cylindrical magnetron discharge in crossed radial electric and axial
magnetic fields.

TABLE I. Gradient operator and field terms in cylindrical
coordinates.

m Gm
s11d am

s1d
Vm

s1d

0 0 0 −iV

1 e−iw /Î2si]r + ]w / r d iare
−iw /Î2 0

−1 eiw /Î2s−i]r + ]w / r d −iare
iw /Î2 0
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FvS]r −
m− 1

r
D + arS]v +

l + 2

v
DGFl+1,m−1

s2l + 3d
g1

+ FvS]r −
m− 1

r
D + arS]v −

l − 1

v
DGFl−1,m−1

s2l − 1d
g2

+ FvS]r +
m+ 1

r
D + arS]v +

l + 2

v
DGFl+1,m+1

s2l + 3d
g3

+ FvS]r +
m+ 1

r
D + arS]v −

l − 1

v
DGFl−1,m+1

s2l − 1d
g4

= − iVmFl,m − JlsFl,md, s13d

where the indicesl and m take the valuesl =0,1,2, . . .,m
=−l , . . . ,l, and the coefficientsgk are

g1 = H− 1, m. 0,

sl − m+ 1dsl − m+ 2d/4, mø 0,
J

g2 = H1, m. 0,

− sl + mdsl + m− 1d/4, mø 0,
J

g3 = Hsl + m+ 1dsl + m+ 2d/4, mù 0,

− 1, m, 0,
J

g4 = H− sl − m− 1dsl − md/4, mù 0,

1, m, 0.
J

The hierarchy of equationss13d is valid for both electrons
and ions and permits one to compute the coefficientsFl,m and
the relevant macroscopic quantities.

IV. MACROSCOPIC QUANTITIES

The main macroscopic properties of physical interest are
the particle number density, mean energy, and particle flux
density in the radial and azimuth directions. These quantities
can be found by velocity space averaging of the distribution
function. Thus, the number densityn and mean energyUa

are

n =E fsr ,vddv = Î4pE
0

`

f0
s0dsr ,vdv2dv

= Î4pE
0

`

N0,0F0,0v
2dv = 4pE

0

`

F0,0v
2dv, s14d

Ua =
1

n
E mav2

2
fsr ,vddv =

4p

n
E

0

`

F0,0
mav2

2
v2dv. s15d

The radial, azimuth, and axial components of the particle
flux density result from the velocity space averaging of the
distribution function multiplied by the corresponding veloc-
ity component

j r,w,z =E vr,w,zfsr ,vddv. s16d

The substitution of expressionss4d–s6d for the velocity com-
ponents in cylindrical coordinates and the distribution func-
tion expansions10d into Eq. s16d yields

j r =E
0

`

v2dvE
0

2p

dwvE
0

p

sinuvduv
v
2

P1
1scosuvd

3se−iswv−wd + eiswv−wddo
l=0

`

o
m=−l

l

Fl,mPl
umuscosuvdeimswv−wd 1

2umu

=
4p

3
E

0

`

ResF1,1dv3dv, s17d

jw = −
4p

3
E

0

`

ImsF1,1dv3dv, s18d

jz =
4p

3
E

0

`

F1,0v
3dv. s19d

In our special case of the axially uniform cylindrical magne-
tron dischargeF1,0 and jz equal zero.

In a similar way one can find the higher-order macro-
scopic quantities responsible for the momentum and energy
flux transports. The nonzero components of the second rank
tensor

P = nmaKvv −
v2

3
IL , s20d

whose physical meaning is the tensor of anisotropic pressure
or the traceless part of the momentum fluxsI is the second
rank identity tensord, in cylindrical coordinates have the fol-
lowing form:

Prr = maE svrr − v2/3dfsr ,vddv

=
4p

5
E

0

` FResF2,2d −
1

3
F2,0Gmav4dv,

Pzz= maE svzz− v2/3dfsr ,vddv =
4p

5
E

0

` 2

3
F2,0mav4dv,

TABLE II. Reduced matrix elements.

l8 klivf1gil8l kli]v
f1gil8l kliLf1gil8l

l +1 vÎsl +1d/ s2l +1d Îsl +1d/ s2l +1dfd/dv + sl +2d/ vg 0

l 0 0 −Îlsl +1d
l −1 vÎl / s2l +1d Îl / s2l +1dfd/dv − sl −1d/ vg 0
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Pww = maE svww − v2/3dfsr ,vddv = − Pzz− Prr ,

Prw = Pwr = maE vrwfsr ,vddv = −
4p

5
E

0

`

ImsF2,2dmav4dv.

The tensor of the isotropic pressure of particles is

P = nmaKv2

3
IL, Pii =

4p

3
E

0

`

F0,0mav4dv.

In the case of nonzero axial electric field and gradientsfor
instance, a magnetron discharge of finite length with the ends
closed by shields biased at the potential of the plasma or
cathoded the componentsPrz andPzw will differ from zero.

The third rank tensor

C =
nma

2
kvvv − v2Iv l s21d

corresponds to the difference between the energy flux tensor

C̃ =
nma

2
kvvvl s22d

and the tensorIj u, wherej u is the energy flux vector with the
components

jur =
4p

3
E

0

`

ResF1,1d
mav2

2
v3dv,

juw = −
4p

3
E

0

`

ImsF1,1d
mav2

2
v3dv,

juz=
4p

3
E

0

`

F1,0
mav2

2
v3dv.

The nonzero components of the third rank tensors21d are

Crrr =
4p

7
E

0

` F3

2
ResF3,3d −

3

5
ResF3,1d −

14

15
ResF1,1dG

3
mav2

2
v3dv,

Crww = −
4p

7
E

0

` F3

2
ResF3,3d +

1

5
ResF3,1d −

7

15
ResF1,1dG

3
mav2

2
v3dv,

Crzz=
4p

7
E

0

` F4

5
ResF3,1d +

7

15
ResF1,1dGmav2

2
v3dv,

Cwrr = −
4p

7
E

0

` F3

2
ImsF3,3d −

1

5
ImsF3,1d +

7

15
ImsF1,1dG

3
mav2

2
v3dv,

Cwww =
4p

7
E

0

` F3

2
ImsF3,3d +

3

5
ImsF3,1d +

14

15
ImsF1,1dG

3
mav2

2
v3dv,

Cwzz= −
4p

7
E

0

` F4

5
ImsF3,1d +

7

15
ImsF1,1dGmav2

2
v3dv.

The tensor componentsCi jk do not change under permuta-
tion of indexes. Contraction of tensors21d with respect to
any pair of indices gives zero:Cirr +Cizz+Ciww=0.

The components of the tensorss20d ands21d appear in the
momentum and energy flux balance equations.

V. TWO-TERM APPROXIMATION

The well-known two-term representation of the phase
space distribution functionf in cylindrical geometry

f = f0 + sv/vdf1 = f0 + svzf1z + vr f1r + vwf1wd/v,

follows from Eqs.s10d and s4d–s6d, and propertys11d, with
the definitionsf0;F0,0, f1r ;ResF1,1d, and f1w;−ImsF1,1d.
The passage to the limit of the two-term approximation can
be easily demonstrated by settingl =0, m=0 and l =1, m
= ±1 in Eq. s13d. The equation for the isotropic part of the
distribution function then becomes

fvs]r + 1/rd + ars]v + 2/vdgsF1,−1+ F1,1d/6 = J0.

At l =1, m=1,−1, andJ1=−nF1,m sn is the collision fre-
quencyd, Eq. s13d takes the form

fv]r + ar]vgF0,0= 7 iVF1,±1 − nF1,±1. s23d

At l =1 andm=0 we obtainF1,0=0.
By extracting the real and imaginary parts from the com-

plex conjugate equationss23d and using the above defini-
tions, we obtain the following equations for the axial, azi-
muth, and radial anisotropic parts of the distribution, as well
as the equation for the isotropic distribution function:

f1z = 0, f1w =
V

n
f1r ,

f1r = −
n

V2 + n2Sv
]f0

]r
+ ar

]f0

]v
D ,

v
3

1

r

]

]r
rf 1r +

ar

3

1

v2

]

]v
v2f1r = J0.

These equations coincide with the conventional ones used in
the sf0, f1d approximation for electrons in crossedEr ,Bz

fields.

VI. FOUR-TERM APPROXIMATION FOR ELECTRONS

Equations for the distribution function expansion coeffi-
cients in the multiterm approximation follow from the hier-
archy s13d, with l =0,1,2,3,etc., andm=−l , . . . ,l. Trunca-
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tion of the infinite summation atl = lmax corresponds to the
sl = lmax+1d-term approximation with all higher expansion
coefficients being set to zero.

Hereinafter, we consider the four-term approximation for
the electrons. The procedure for ions is analogous.

Electrons with the charge −e and massme move in the
radial potentialwsrd=eRC

r s−Eddr from the cathode of radius
RC to anode. The direction of their motion coincides with the
r-axis direction and is opposite to the direction of the field
Er. Equationss13d can be simplified by the transformation of
the variablessv ,rd to variabless« ,r8d, wherer8=r and the
total energy «=U+Fsrd is the sum of the kineticU
=mev2/2 and potentialFsrd=s−edwsrd energies. Using the
transformation rules

]r = ]r8 + eE]«, ]v = mev]«,

we come to the following hierarchy for the coefficients

F̃l,ms« ,rd=2ps2/med3/2Fl,msv ,rd:

FUS]r −
m− 1

r
D − eE

l + 2

2
G F̃l+1,m−1

s2l + 3d
g1

+ FUS]r −
m− 1

r
D + eE

l − 1

2
G F̃l−1,m−1

s2l − 1d
g2

+ FUS]r +
m+ 1

r
D − eE

l + 2

2
G F̃l+1,m+1

s2l + 3d
g3

+ FUS]r +
m+ 1

r
D + eE

l − 1

2
G F̃l−1,m+1

s2l − 1d
g4

= − iVmsmeU/2d1/2F̃l,m − SlsF̃l,md. s24d

Here, the kinetic energyU=«−Fsrd is the dependent vari-
able, and the collision operatorsSl =smeU /2d1/2Jl.

The hierarchys24d should be converted then into a system
of equations written explicitly for required values ofl andm.
Equations for the indicesm and −m form complex conjugate

pairs. By extracting the real and imaginary parts ofF̃l,±m
from the pairs of coupled equations we obtain the following
system of equations for the functionsfks« ,rd:

U

3

1

r

]

]r
rf 1 −

eE

3
f1 = S0, s25d

A1f1 + U
]f0

]r
+

3

5
U

1

r2

]

]r
r2f2 −

U

5

]f3

]r
+

3

10
eEsf3 − 3f2d = Gf6,

s26d

A2f2 +
15

14
U

1

r3

]

]r
r3f4 +

U

3
r

]

]r

f1

r
−

U

7
r

]

]r

f5

r

+ eES1

6
f1 −

15

7
f4 +

2

7
f5D = 2Gf7, s27d

A2f3 +
6

7
U

1

r

]

]r
rf 5 −

U

3

1

r

]

]r
rf 1 − eES1

6
f1 +

12

7
f5D = 0,

s28d

A3f4 +
U

5
r2 ]

]r

f2

r2 +
eE

5
f2 = 3Gf8, s29d

A3f5 +
U

5

]f3

]r
−

U

10

1

r2

]

]r
r2f2 −

eE

10
sf2 − 2f3d = Gf9, s30d

A1f6 +
3

5
U

1

r2

]

]r
r2f7 −

9

10
eEf7 = − Gf1, s31d

A2f7 +
15

14
U

1

r3

]

]r
r3f8 +

U

3
r

]

]r

f6

r
−

U

7
r

]

]r

f9

r

+ eES1

6
f6 −

15

7
f8 +

2

7
f9D = − 2Gf2, s32d

A3f8 +
U

5
r2 ]

]r

f7

r2 +
eE

5
f7 = − 3Gf4, s33d

A3f9 −
U

10

1

r2

]

]r
r2f7 −

eE

10
f7 = − Gf5. s34d

Here we use the following designations for the real parts of
the components:

F̃0,0= f0, ResF̃1,1d = f1, ResF̃2,2d = f2,

F̃2,0= f3, ResF̃3,3d = f4, ResF̃3,1d = f5,

and for the imaginary parts:

ImsF̃1,1d = f6, ImsF̃2,2d = f7,

ImsF̃3,3d = f8, ImsF̃3,1d = f9.

The coefficientsAl sl Þ0d andG are defined by

SlsF̃l,md = − AlF̃l,m, Als«,rd ; UNQSsUd,

Gs«,rd ; smeU/2d1/2V, V = − eB/me,

whereN is the neutral gas densitysa cold gas is being con-
sidered, which corresponds to the low-temperature cylindri-
cal magnetron discharge in a gas flowd and the total cross
section is

QS = Ql + Qex+ Qdi. s35d

The collision operatorS0 involves elastic, inelastic, and
ionizing collisions of electrons with atoms of an inert gas
and can be written in the form

S0 = S0
elsf0d + S0

exsf0d + S0
disf0d,

where

S0
elsf0d = 2

me

M

]

]«
fU2NQdsUdf0sU,rdg,
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S0
exsf0d = − UNQexsUdf0s«,rd

+ sU + UexdNQexsU + Uexdf0s« + Uex,rd,

S0
disf0d = − UNQdisUdf0s«,rd

+ sU/b + UdidNQdisU/b + Udidf0sU/b + Udi,rd/b

+ sU/f1 − bg + UdidNQdisU/f1 − bg + Udid

3 f0sU/f1 − bg + Udi,rd/f1 − bg.

The cross sections appearing in Eq.s35d and collision opera-
tors areQl, the generalized cross sections resulting from an
averaging of the differential cross sections over the solid
angle of scattering,Qd, the momentum transfer cross section,
Qex, the total excitation cross section with the thresholdUex,
and Qdi, the direct ionization cross section with the ioniza-
tion potentialUdi. The quantitiesb and 1−b denote the frac-
tion in which the remaining kinetic energy of the colliding
electron is shared in ionization event between the two out-
going electrons. Inelastic scattering is supposed here to be
isotropic. Superelastic collisions do not play a role because
of a small excited atom density.

To take into account the anisotropic scattering in elastic
collisions the differential cross sectionsselsU ,cosud are
needed. This can be simplified by assuming separation of
variablesf18,19g, according to which the differential cross
sections

selsU,xd = Q0
elsUdRsxd/s2pd, x ; cosu, − 1ø x ø 1,

are expressed in terms of the total elastic cross section
Q0

elsUd and the scattering profileRsxd

Rsxd =
1

a
expS−

sx − xcd2

xw
2 D ,

a =E
−1

1

expS−
sx − xcd2

xw
2 Ddx.

The valuesxc=1 andxw=0.5 for the center and width of the
scattering profile correspond to a considerable forward scat-
tering of electrons. The valuexw=` describes the isotropic
scattering.

Under this approximation the generalized cross sections
are written in the form

QlsUd = QdsUdsan/a1d, an = 1 −E
−1

1

RsxdPnsxddx,

wherePn are the Legendre polynomials.

VII. BOUNDARY CONDITIONS

The system of equationss25d–s34d for the distribution
function expansion coefficients should be supplemented by
the relevant boundary conditions that correspond to the prob-
lem specifics and reflect the processes at the boundaries of
the solution region.

The solution region of systems25d–s34d for the cylindri-
cal magnetron discharge in the plane total energy« and ra-

dial coordinater is schematically shown in Fig. 2. The re-
gion is limited on top by the boundaryD s«=«`d, where all
expansion coefficients of the distribution function become
negligibly small; on the right by the lineC sr =RAd corre-
sponding to the anode position; on the left by the boundary
A s«.0d where the electrons are ejected into the plasma
from the cathode surface; and on the left and from below by
the curveB f«=Fsrdg at which the electron kinetic energy
equals zerosU=0d.

A half-space analysisf20–23g has shown that, for multi-
term expansions, stable numerical solutions result when the
boundary conditions are applied alternatively at the anode
and cathode, for functions with even and oddl indexes.
Thus, the boundary conditions for the functions with evenl
indexessin our designations these aref0, f2, f3, f7d should be
specified at the anode, and for the terms with oddl sthese are
f1, f4, f5, f6, f8, f9d at the cathode and on the curveB.

The anode boundary conditions must provide a transition
from the positive column to the equipotential anode. Condi-
tions at the absorbing surface for expansion coefficients re-
sulting from the spherical harmonic decomposition of the
distribution of neutrons in the medium surrounding “black”
sphere were first obtained by Marshakf24g. The main ideas
proposed by Marshak are that the hierarchy should be trun-
cated at oddl indices, since the even approximations contain
singular parts which have no clear physical significance; and
that the boundary conditions at the absorbing surface in the
l-term approximation should follow from the corresponding
odd velocity moment of the distribution function. Multiterm
studiesf25,26g of the electron distribution function in the
anode region have contributed significantly to the field.

Following f26g, where the plane anode region was studied
by a multiterm Legendre polynomial expansion, we develop

FIG. 2. Solution region of the system of equationss25d–s34d in
the variables total energy« and coordinater. Distribution of the
potentialwsrd is typical for the cylindrical magnetron discharge in
argon atB=100 G.
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a method to deduce the boundary conditions at the radial
absorbing boundary of a cylindrical plasma, for the multi-
term spherical harmonic representation of the phase space
distribution function. Relations for the expansion coefficients
at the anode boundary were derived in Ref.f26g by decom-
posing the particle fluxessand higher odd velocity momentsd
into elementary microscopic fluxessmomentsd, directed to-
ward and away from the anode surface. The reflection con-
dition applied to these microscopic fluxes resulted in a cou-
pling of the functions with even and oddl indices, thus
yielding the required boundary conditions.

At first, the procedure to deduce the boundary conditions
at the anode will be demonstrated for the first velocity mo-
ment that corresponds to the radial flux density of electrons.
The radial flux density determined by Eq.s17d can be repre-
sented as a sum of the microscopic flux densities directed
towards and away from the anode. To obtain these fluxes in
cylindrical geometry a reference to Fig. 3 is useful.

It is seen from Fig. 3 that the electron flux toward the
anode j r

+ is limited by the angleswv in the range of the
differencewv−w from −p /2 to p /2, and the flux going away
from the anodej r

− is given by the angleswv−w in the range
from p /2 to 3p /2. The corresponding microscopic particle
fluxes can be calculated as

j r
− =E

0

`

vrv
2dvE

w+p/2

w+3p/2

dwvE
0

p

sinuvduv

3 o
l=0

`

o
m=−l

l

Fl,msr,v,tdPl
umuscosuvdeimswv−wd 1

2umu ,

j r
+ =E

0

`

vrv
2dvE

w−p/2

w+p/2

dwvE
0

p

sinuvduv

3 o
l=0

`

o
m=−l

l

Fl,msr,v,tdPl
umuscosuvdeimswv−wd 1

2umu .

In the case of a partial absorption of electrons by the anode
surface these microscopic fluxes are related by the reflection
condition

j r
− = − j j r

+

with the values of the reflection coefficientj running be-
tween zero and unity.

Hereinafter for simplicity reasons all electrons having
reached the anode are assumed to be absorbed, i.e.,j r

−=0 and
reflection coefficientj=0. Applying this absorption require-
ment to each energy of the integrand we obtain the following
boundary condition for the expansion coefficients in the two-
term approximation

o
l=0

o
k=−l

l
1

2ukugk
s1da1l

1kFl,k = 0, s36d

where

gk
s1d =E

w+p/2

w+3p/2

seisk−1dswv−wd + eisk+1dswv−wdddwv,

a1l
1k =E

−1

1

P1
1sxdPl

ksxddx.

The conditions36d in the conventional two-term approxima-
tion reads

F0,0=
2

3
ResF1,1d.

Similar relationships have been obtained in many two-term
studiesse.g.,f27–29gd.

To obtain the boundary conditions for the four-term ap-
proximation one must consider, in a similar way, the radial
components of the third velocity moment given by the com-

ponentsC̃rrr , C̃rww andC̃rzz of the energy flux tensors22d

C̃rkk =
me

2
E vrkkfsr ,vddv,

wherevrrr =vr
3, vrww=vrvw

2, vrzz=vrvz
2.

From the requirement of complete absorption of the en-

ergy flux tensor radial componentsC̃rrr
− =0, C̃rww

− =0, and

C̃rzz
− =0 it follows that

o
l=0

o
k=−l

l
1

2ukua3l
3ksgk

s3d + 3gk
s1ddFl,k = 0, s37d

o
l=0

o
k=−l

l
1

2ukua3l
3ksgk

s3d − gk
s1ddFl,k = 0, s38d

o
l=0

o
k=−l

l
1

2ukugk
s1dsa1l

1k − a3l
3k/15dFl,k = 0, s39d

where

gk
s3d =E

w+p/2

w+3p/2

seisk−3dswv−wd + eisk+3dswv−wdddwv,

FIG. 3. Spherical coordinatessv ,uv ,wvd in velocity space and
cylindrical coordinatessz,r ,wd in configuration space. Figure on
the right shows the planez=const. Shaded area of the smaller circle
corresponds to the angleswv at which the particle flux goes away
from the anode.
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a3l
3k =E

−1

1

P3
3sxdPl

ksxddx.

After substitution ofgk
snd scf. Table IIId andanl

nk sn=1,3d scf.
Table IVd in Eqs. s37d–s39d and cancellation of terms con-
taining the imaginary parts ofFl,±k, the boundary conditions
for the functionsf0=F0,0, f2=ResF2,2d, and f3=F2,0 take the
representation

f0 =
8

15
f1 +

12

35
f5 −

6

7
f4,

f2 =
4

15
f1 −

4

35
f5 +

18

7
f4,

f3 = −
4

15
f1 +

12

5
f5 +

6

7
f4. s40d

Notice that the conditions36d holds too.
The boundary condition for the imaginary part of the term

f7=ImsF2,2d follows from the absorption requirement for the

third rank tensor componentC̃wrr =C̃rr w in the form

o
l=0

o
k=−l

l
1

2ukua3l
3ksg̃k

s3d + 3g̃k
s1ddFl,k = 0, s41d

where

g̃k
snd =E

w+p/2

w+3p/2

seisk−ndswv−wd − eisk+ndswv−wdddwv.

Cancellation of the real parts in Eq.s41d, followed by the
substitution of the corresponding coefficients listed in Tables
III and IV, results in the relationship

f7 = −
8

15
f6 +

8

35
f9 −

12

7
f8. s42d

The boundary conditions at the anode surface written in the
form of Eqs.s40d ands42d for the functions with evenl index
in the four-term approximation ensure the solution stability
and smooth transition from the inhomogeneous positive col-
umn to the equipotential anode.

The presence of the axially directed electric field gener-
ates the particle fluxes along thez axis. In this case the ab-
sorption or reflection conditions should be also set for the

axial tensor componentsC̃zzz, C̃zww, C̃zrr, and C̃zzw. In the
next six-term approximation for the distribution function the
boundary conditions at the anode should be derived from the
reflection requirements for the fifth order velocity moment.

The boundary conditions on the cathode side can be set by
various methodsse.g., f23,25,30gd. The two boundariesA
and B specified in Fig. 2 are to be considered here. Condi-
tions on the boundaryA s«.0d correspond to the distribu-
tion of electrons ejected from the cathode. These electrons
are assumed to form a high-energy beam with anisotropic
distribution f1sUd=ResF1,1d=expf−sU−Umd2/ sdUd2g with a
center at the energyUm and width dU. The values of the
anisotropic functionsf6, f4, f5, f8, and f9 should be chosen
consistently with the system of equations. This consistency
can be reached in the simplest way, by settingf4=0, f5=0,
f8=0, f9=0, and

f6 = −
smU/2d1/2V

NQ1sUdU
f1,

valid along with the additional conditionf7=0. Conditions
on the potential curve whereU=0 s«,0d can be derived by
analyzing the system of equations in the limitU→0. This
analysis shows that all anisotropic components must turn
into zero on the boundaryB sFig. 2d: f1= f6= f4= f5= f8= f9
=0. However, an employment of the additional requirement
f7=0 can be useful to ensure the solution’s stability under
nonzero magnetic field conditions. The reason is that the
functions f6, f8, and f9 in the vicinity of zero kinetic energy
vary approximately as,U−1 leading to quick accumulation
of small discretization errors present in any numerical
scheme.

The balance equations for particle number, energy, and
momentum will be considered in the following paper, as well
as calculations of the isotropic and anisotropic parts of the
distribution function. These and the calculation of additional

TABLE III. Coefficients gk in the boundary conditions
s37d–s39d and s41d.

k −3 −2 −1 0 1 2 3

gk
s1d 0 −4/3 p −4 p −4/3 0

gk
s3d p −12/5 0 4/3 0 −12/5 p

g̃k
s1d 0 −8/3 −p 0 p 8/3 0

g̃k
s3d −p 8/5 0 0 0 8/5 p

TABLE IV. Coefficientsanl
mk in the boundary conditionss37d–s39d and s41d.

a0l
0k a1l

1k a2l
0k a2l

2k a3l
3k

l =0, k=0 2 p /2 0 4 45p /8

l =1, k=1 p /2 4/3 −p /16 9p /8 16

l =2, k=0 0 −p /16 2/5 −4/5 −45p /32

l =2, k=2 4 9p /8 −4/5 48/5 225p /16

l =3, k=1 0 0 21p /64 −9p /32 −48/7

l =3, k=3 45p /8 16 −45p /32 225p /16 1440/7
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macroscopic quantities will be illustrated on concrete ex-
amples of real operating conditions for cylindrical magnetron
discharge.

VIII. CONCLUSION

In this paper we have developed a nonhydrodynamic
method to treat the anisotropic electron distribution functions
in crossed electric and magnetic fields in the presence of
spatial inhomogeneities. The method is based on the spheri-
cal tensor decompositionf11,12,15g of the phase space dis-
tribution function with further employment of the specific
properties of tensor expansion coefficientsf15g resulting
from the cylindrical symmetry of the discharge. The system
of equations describing the spatioenergetic evolution of the
distribution function expansion coefficients from cathode to
anode in the cylindrical magnetron discharge is obtained.
The problem of appropriate boundary conditions at elec-
trodes is considered for cylindrical geometry with respect to
even and odd distribution function components written in the
spherical tensor notation. The boundary conditions ensuring
the solution stability and satisfaction of particle, energy and
momentum balance equations are derived at the anode by
considering microscopic fluxes of velocity moments directed
toward the anode.

An important requirement of decomposition methods is a
formulation of the simplest possible system of equations
which would give an adequate description of the object on
the one hand and could be relatively easily solved analyti-
cally or numerically on the other hand. The multiterm treat-
ments of the electron distribution anisotropy using Cartesian
tensors become especially awkward in the presence of the
magnetic field. The generalization of the spherical tensor de-
composition f15g developed in the present paper for the
crossed electric and magnetic fields possesses an elegance
and physical transparency. The resulting system of equations
for calculations of the distribution function expansion coef-
ficients can be easily obtained from the general hierarchy and
contains a reasonable number of equationss10, 21, and 36
equations in four-, six-, and eight-term approximations, re-
spectivelyd. Since the presence of a magnetic field reduces
the distribution function’s anisotropy, convergence is ex-
pected to be reached by the six-term approximation, even for
the case of strong electric and weak magnetic fields. Thus,
the appropriate and detailed description of the near-electrode
regions in weak magnetic fields when the anisotropy is not
negligible, can be obtained without use of the PIC MCC
methods. A similar method can also be applied to describe
anisotropy phenomena in a cylindrical dc discharge in an
axial magnetic field.
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APPENDIX

In this section we prove mathematically the possibility of
representing the coefficientsfm

sld of the spherical harmonics
expansions2d in the form of Eq.s9d for cylindrical discharge
in electric and axial magnetic field. Then, the expansion co-
efficientsFl,m will be shown to have propertiess11d ands12d.

We assume rotational symmetry about the axis of the cyl-
inder, that is, the azimuth gradients and fields are identically
zero. In addition, we assume that the spatial gradients]r are
produced by the electric field. In other words, the plasma
cannot be inhomogeneous in the direction in which there is
no acceleration of particles due to electric fieldse.g.,]z=0, if
Ez=0d.

A general method to find the tensor coefficientsfm
sld

f11,12g is based on the possibility of representing any tensor
fm

sld by a sum over all possible convolutions of tensors formed
from the independent directions in a system. There are two
independent directions determined by electric and magnetic
fields in the system of cylindrical discharge. The electric
field Esr ,zd has axial and radial components generally, and
its direction varies with the radial and axial positions. It is
convenient to think that the electric field produces two or-
thogonal independent preferential directionsEz and Er ,
which in accordance with the particular magnitude ofEr and
Ez combine at every pointsr ,zd to give oneEsr ,zd. The
directionsEz and Er remain independent of position. The
magnetic field determines then the third direction. According
to Ref. f12g, the tensor coefficients can be represented quite
generally in the following form:

fm
sld = o

l=0

`

o
l8=0

`

o
l9=0

`

o
l-=0

`

f̄sl,l,l8,l9,l-d

3 ffYsl-dsEz
ˆ d,YsldsEr

ˆ dgsl8d,Ysl9dsB̂dgm
sld, sA1d

where f̄sl ,l ,l8 ,l9 ,l-d are scalar coefficients. Parity consid-

erations requiref̄sl ,l ,l8 ,l9 ,l-d=0 unless

l- + l + l = even. sA2d

It follows, for B andEz directed along thez axis, that

Ym9
sl9dsB̂d = s− idl9fs2l9 + 1d/4pg1/2dm9,0,

Ym-
sl-dsEz

ˆ d = s− idl-fs2l- + 1d/4pg1/2dm-,0.

Using the tensor coupling rulese.g., Eq.s9d in f11gd we ob-
tain the following representation:

fm
sld = o

l=0

`

o
l8=0

`

o
l9=0

`

o
l-=0

`

f̃sl,l,l8,l9,l-ds− idl9+l-

3 sl-0lmul8mdsl8ml90ulmdYm
sldsEr̂d. sA3d

The functions f̄ and f̃ differ by the factorfs2l9+1ds2l-
+1dg1/2/4p.

Let us reduce Eq.sA3d to the form of Eq.s9d. By com-
paring definitions forYm

sld andNl,m given in Secs. II and III,
we note that
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Ym
sldsu,wd = s− 1dls− idl+lNl,me−imwPl

umuscosudsl,l,umu,

wheresl,l,umu is a scalar factor, which does not influence the
symmetry properties; the anglesu andw specify the direction
of vector Er in the spherical basissr ,u ,wd, associated with
the cylindrical basissz,r ,wd, apparentlyu=p /2. By substi-
tuting this relation into Eq.sA3d we see

fm
sld = Nl,mFl,me−imw,

with the expansion coefficients

Fl,m ; o
l. . .l-

f̃sl,l, . . . ,l-dsl,l,umus− 1dls− idl+l+l9+l-

3 sl-0lmul8mdsl8ml90ulmdPl
umuscosud. sA4d

The equalitysA4d results in a series of important proper-
ties for the coefficientsFl,m and the phase space distribution
function s10d.

First, symmetry properties of the Clebsch-Gordan coeffi-
cientsse.g., Eq.s10d in f11gd require the complex conjugation
of the coefficientsFl,m andFl,−m fsee Eq.s11dg.

Second, the associated Legendre function propertyfe.g.,
Eq. sA2d in f15gg imposes an additional condition at
u=p /2 for the fieldEr ,

l + m= even. sA5d

In the absence of the axial electric fieldEz=0, l-=0, con-
ditions sA2d and sA5d combine to form the constraints12d.

Thus, with reference to the axially homogeneous cylindri-
cal magnetron discharge in crossedEr andBz fields sFig. 1d,
the expansion coefficientsFl,m possess the properties speci-
fied by formulass11d and s12d.

The presence of the axial electric field destroys the con-
straint s12d. In the case of only axial electric and magnetic
fields, i.e., atl=0 andm=0, the coefficientsfm

sld in Eq. sA3d
become real functions with onel index, i.e., the limiting case
for the plane parallel geometry is realized. The distribution
function here is independent of the magnetic field strength.
At B=0, l9=0, conditionsA2d forces ImsFl,md=0 indepen-
dently of the electric field configuration.
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