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Anisotropy of the electron component in a cylindrical magnetron discharge.
I. Theory of the multiterm analysis
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A general multiterm representation of the phase space electron distribution function in terms of spherical
tensors is used to solve the Boltzmann kinetic equation in crossed electric and magnetic fields. The problem is
formulated for an axisymmetric cylindrical magnetron discharge with the homogeneous magnetic field being
directed axially and the electric field between the coaxial cathode and anode varying in radius only. A spherical
harmonic representation of the velocity distribution function in Cartesian coordinates becomes especially
cumbersome in the presence of the magnetic field. In contrast, the employment of a spherical tensor represen-
tation leads to a compact hierarchy of equations that accurately take into account the spatial inhomogeneities
and anisotropy of the plasma in crossed fields. To describe the spatially inhomogeneous plasma the hierarchy
of the kinetic equations is formulated in terms of the total energy and the radial coordinate. Appropriate
boundary conditions at the electrodes for the tensor expansion coefficients are obtained.
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I. INTRODUCTION distribution function is strongly anisotropic in genef8l.
Running a few steps forward, we note that the multiterm

Owing to their various practical applications in creating analysis presented in Secs. |-V is valid for both electrons
and etching thin films, magnetron sputtering discharges reand ions.
main the focus of many experimental and theoretical studies. A comprehensive theoretical analysis of the spatially in-
To simulate the physical processes in magnetron dischargé®mogeneous Boltzmann kinetic equation in electric and
various hydrodynamid1,2], particle-in-cell (PIC) Monte  magnetic fields is given in Ref§9,10] using Cartesian ten-
Carlo[3-5], and hybrid methodf5] have been developed as sors to decompose the phase space distribution function.
well as the nonhydrodynamic methods based on the solutioHowever, direct applications of these theories seemed impos-
of the Boltzmann nonlocal kinetic equatidn. sible. Robson and Ne$4&1] suggested decomposing the dis-

A detailed description of the nonlocal nonhydrodynamictribution function and the Boltzmann kinetic equation in a
behavior of electrons in a spatially inhomogeneous plasmapherical harmonics series in velocity space, with the expan-
by a strict kinetic analysis can be reached by two alternativesion coefficients being the spherical tensors. An infinite hier-
ways: the first way is to use PIC MC@®/onte-Carlo colli- archy of equations for the tensor coefficients was obtained
siong methods, and the second way is to solve the Boltzfor electric[11] and magnetic field12] situations and ap-
mann kinetic equation by decomposition of the phase spacglied then to hydrodynamic description of charged-particle
distribution function using orthogonal functions or small pa-swarms[13,14].
rameters. Particle simulation techniques have proved their In a recent papefl5] the multiterm theoryf11] was re-
efficiency and flexibility for complicated configurations of formulated and generalized to nonhydrodynamic plasma
fields and plasma geometries. Their disadvantages are cooenditions. Chains of equations for the distribution function
nected mainly with large numerical expenditures required t@xpansion coefficients in the presence of electric field and
reduce the statistical fluctuations in order to obtain detailedjyradients were obtained for the plane, spherical, and cylin-
information about the velocity distribution function. Decom- drical geometries. This formed the basis for nonhydrody-
position methods are usually limited to a simple geometrynamic nonlocal multiterm studies of low-temperature plas-
but require essentially smaller calculation expenditures andas.
give detailed and stable solutions. In the present study the multiterm spherical tensor repre-

The electron distribution function in an inert gas dis- sentation developed ifl5] for cylindrical discharges is ex-
charge plasma is weakly anisotropic, if the ratio of the di-tended, using the results of R¢12], to include a magnetic
rected to average velocities is small. In such cases a descrifield. This nonhydrodynamic theory is used to describe an-
tion based upon the two-term decomposition of theisotropic phenomena in a cylindrical magnetron discharge in
Boltzmann equation is sufficient. This is the situation for thean axially uniform magnetic field and a radially nonuniform
positive column in inert gases. In the cathode region, wherelectric field. The obtained hierarchy of the kinetic equations
the energy losses in inelastic collisions strongly exceed thosfer the tensor expansion coefficients of the electron distribu-
in elastic impacts, and in the anode region, where electronson function in crossed electric and magnetic fields accu-
fall on the absorbing surface, the distribution becomes anisaately takes into account the spatial inhomogeneities of
tropic and multi-term expansion treatmeiits MCC meth-  plasma, contains a reasonable number of equations, and can
od9 are required. For many molecular gases, as for ions, thbe solved numerically. Macroscopic quantities including sec-
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ond and third rank tensors for momentum and energy fluxes
are discussed. The important problem of appropriate setting
of boundary conditions for expansion coefficients with evenare related to the Cartesian basis of configuration space
and odd indice$ is considered for the cylindrical geometry (x,y,z) by
and the tensor formalism used. In the following paper the

general theory developed here is applied to a real magnetron
discharge in argon, and the anisotropy visualizations are il-

v = —ivPL(cosa,) /2

v,=v cosf, =ivy’,

lustrated on particular examples.

Il. THE BASIC EQUATIONS

The Boltzmann kinetic equation for the phase space dis

tribution functionf(r,v,t) of charged particles has the fol-
lowing form:

[g+V 0 +(@+v X Q)3 v)=-3F, (1)

where a=eE/m, is the acceleration of a particle with the

mass m, and chargee in the electric fieldE, and

=eB/m, is the frequency of the cyclotron rotation in the

magnetic fieldB. The collision operatod characterizes the
rate of change of the functiohdue to collisions of charged

particles with neutral atoms. The plasma is assumed to be
weakly ionized, so that the collisions between charged par-

ticles are negligible.
The multiterm representatidi 1] of the Boltzmann equa-

tion starts with the following decomposition of the phase

space distribution functiof(r ,v,t) in terms of spherical har-

monics in velocity space with the basis of spherical coordi-

natesv=(v,¢,,0,):

o |
frov,t)=> > f9r,0,0Yww), (2
1=0 m=-I
wherel=0,1,2...%, m=-l, ... |. According to the tensor

formalism of Fano and Racdh1,16 a standard tensdﬂ) is

vy=vSing, cose, = - i[v(f) - v(_ll)]/\s‘E,

vy=v Ssing, sing, = [v(ll) + v(_ll)]/\e“'Z,

and to the basis of cylindrical coordinatés ¢,z) by

Ur =0, COS@ + vy SiNg

=-ifuee - v Yei?)\2

- %F’i(cos 0,)(e7 7% + g9, (4)
V,=—UxSiN@+v, COSE
= [v(ll)ei“’ + v(_ll)e_i“’]/\fE
- igpi(cos 0,)(e7 (9 — o)), (5)
v,=U,= ivél) =vP?(COS¢9v). (6)

According to papers by Robson and N€$§,12, decom-
position of the Boltzmann equation using the multiterm rep-
resentation of in the form of expansioni2) is performed in
the following way.

The presence of a magnetic field is described by the op-
erator L=vXxd4, [12], which satisfies the identity(v
x Q) -3,=—€ -L. After substitution of expansiof®) into the

the complex conjugate of the contrastandard irreducible teng; o+ equation(1), multiplication on the left by the com-

sor fgﬂ of rank | whose 2+1 objects transform under rota-
tions of the coordinate frame like the spherical harmonics

(21 + 2)(1 = |m])! ]1’2

4r(l + |m|)!
X P|M(cos@,)em,
with the associated Legendre functions defined by
(_ 1)I I+|m|

d
plm 0)=—>(sing)M——(1 -co2g).
| (COS v) 2|| ! (SIn U) d COSHIU+|m‘ ( co v)

Yhlviv) =il(- 1)<m+ml>/2[

The spherical components of an arbitrary vediocan be
written in terms of the spherical harmonics as

4
bl = | /?WbY(nP(b/b), m=0,£1.

The spherical components of the velocity vector

()

v =-ivPY(cosh,),

v =ivPi(cosd, e %\2,

plex conjugate spherical harmorii’é'n)(v/v), and integration
over all directions of velocity spacé&/v, the following infi-
nite hierarchy of equations for the coefficien‘tf# is ob-
tained:

af+ 2 (I’m’l,u||m)<|||v[1]|||r>GL11>fS1’,>

I'm’ u

+ 3 0m lmlAa e

1I'm’

- 3 a0 mam L)

1'm’ w

= - J(f). (7)
Here,G™?, !, and Q¥ are the gradient operator, the ac-
celeration due to the electric field, and the cyclotron fre-
quency in irreducible tensor notation, the values in parenthe-
ses are the Clebsch-Gordan coefficients and the values in
angular brackets are the reduced matrix elements. The right
hand side of Eq(7) contains the spherical componed{of

the collision operator. Summation indices follow the rules
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E TABLE |. Gradient operator and field terms in cylindrical
o ‘Zf coordinates.
L —r ] N
i : 1] (11) (1) @
| cathode _ __ _ \_, __________ v m G, al, Q)
anode 0 = 0 0 = HQ
1 e'¢/\20ig,+a,/r) iae®/\2 0
FIG. 1. Schematic representation of an axially homogeneous -1 ee/\2=ig+a,/r) —ia,€®/\2 0

cylindrical magnetron discharge in crossed radial electric and axiat
magnetic fields.

macroscopic transport coefficients. Another important dis-
tinction is that here the expansion coefficieffs, are com-
plex quantities in contrast tp15], where these functions
The hierarchy of equation&’) can be applied to hydrody- were real.

namic or nonhydrodynamic situations and used for any con- The mathematical proof of the validity of representation
figuration of electric and magnetic fields. The Clebsch-(9) for a cylindrical discharge in axial magne®; and axi-
Gordan coefficientl’'m’1.|Im) have a simple form and are symmetric electri€ =E,+E, fields is given in the Appendix.
tabulated, for instance, in RdfL7]. The reduced matrix ele- Explicit expression for the tensor coefficierﬂ%) [see Eq.
ments were calculated ifl1,12. Further simplification of (A4) and consequences belpvequires the following prop-
Eqg.(7) is connected with the choice of the form of expansionerties for the coefficients, .

coefficientsffw'f with respect to discharge geometry and field (1) The expansion coefficients ,, andF, _,, are the com-
configuration. plex conjugate functions:

I'=1+£1, m=m-pu, w=0,%1.

1. APPLICATION TO CYLINDRICAL GEOMETRY OF Re(F ) = Re(F ),
MAGNETRON DISCHARGE

Cylindrigal geometry of the magnetron discharge under IM(F, ) = = IM(F| _n). (11)
consideratior{Fig. 1) assumes rotational symmetry about the
axis of the cylinder and the absence of azimuth fields and (2) Im(F, ,)=0, if B=0, independently of the electric field
gradients. Radial electric field and gradients provide a presdirection.
ferred directionr /r in velocity space. (3) In crossedE,, B, field configuration(see Fig. 1

As was shown in Ref[15], in this case the phase space
distribution function must have the property

f(r;v;t)=1(r,z;v,0,,¢, - ¢;1), (8)

i.e., it must depend on the difference of the azimuth aggle The property(11) can be obtained directly from E¢L0) by
in velocity spacev=(v,#6,,¢,) and the azimuth angle in requiring the reality of the phase space distribution function
configuration space with cylindrical coordinates(z,r, ¢). f. The property(12) reflects the invariance of the distribution

This reflects the invariance of the distribution shape withfunction under the transformatian,— -v, and the fact that
respect to rotations about the cylinder axis. The tensor déhe magnetic field does not influence charged-particle motion

composition coefficient§” by analogy to[15] will be rep- " the direction parallel to the field.
reseﬁted in the form m %Y gy to15) P The tensor components of the gradient operél%i” and

_ vectors of electri@'” and magneti€©"” fields in Eq.(7) are
fg])(v,r,qo) =Ny F m(v,r)e™™m?, (90  given in Table | for cylindrical coordinates in the particular
case when the electric field and gradients have radial com-
ponents only and the uniform magnetic field is directed along
Aqr(] + |m))! )1/2 1 the axis of the cylinder. These tensor components were cal-
R el I culated in[11,12,19 for Cartesian, cylindrical, and spherical
@+ -|m)r/) 2m : S s
coordinates for various field directions.
being extracted for convenience purposes. The phase spaceThe reduced matrix elements from E@) are shown in
distribution function takes the representation Table II. In the case of the axially directed magnetic field the
magnetic field term is diagonal with respect to the intlex
The steady-state regime of the discharge operation will be
considered hereinafter. Substitution of decompositi®h
into Eq. (7), using explicit values for the Clebsch-Gordan
and possesses the angular dependence prescribed 8) Eq. coefficients, applying the summation rules and taking into
Expression(10) differs from the corresponding equation account the properties of the tensor coefficients and the re-
[Eq. (14)] in Ref.[15] by the factor(2™M)~1, which results duced matrix elements listed in Tables | and Il results in the
below in a more physical form for the integrals denoting thefollowing hierarchy:

Fim=0 unlesd + m=even. (12

with the factor

Nim = (=1)'(- 1)<m+'m>’2(

o |

. 1
f=> > Fimr.zv:)PM(cosh,)eme 9= (10)
1=0 m=-| ' Z‘m‘
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matrix elements.

X o) (i ALy
I+1 o\ (1+1) /(21 +1) Va+y/@+nld/a+0+2 /0] 0
| 0 0 -\l(1+1)
-1 vyl/(21+1) VI/(2|+1)[d/dv—(|—1)/v] 0
m-1 I +2)\ | Fliim1 The radial, azimuth, and axial components of the particle
v{ dr = r ta| g, + T (21 +3) 91 flux density result from the velocity space averaging of the
_ _ distribution function multiplied by the corresponding veloc-
_m-1 =1 Feames ity component
* _”<&’ )+a’(‘9” v )_(2|—1)g2
I m+1 1+2)] Fretmma ]r,M:J UroA(r,V)av. (16)
v\ o+ e Oy+—— mga
- v - The substitution of expressior4)—(6) for the velocity com-
m+1 |- Flotme1 ponents in cylindrical coordinates and the distribution func-
tlulat B 2-1% tion expansior(10) into Eq. (16) yields
=—iQmF|’m—J|(F|’m), (13)

where the indice$ and m take the value$=0,1,2,....m
I, and the coefficientgy are

N
|

93:{
_J-(0=-m-1(-m)y/4, m=0,
%711, m<o.

The hierarchy of equation(d.3) is valid for both electrons
and ions and permits one to compute the coefficientsand
the relevant macroscopic quantities.

-1, m>0,
(I-m+D(I-m+2)/4, m=O0,

1, m>0,
-(l+m+m-1)/4, m=<O0,

(I+m+1)(I+m+2)/4, m=0,
-1, m<O0,

IV. MACROSCOPIC QUANTITIES

The main macroscopic properties of physical interest are
the particle number density, mean energy, and particle flux

density in the radial and azimuth directions. These quantitie
can be found by velocity space averaging of the distributio
function. Thus, the number densityand mean energy,,
are

o0

n:ff(r,v)dv:\’zrf
0

fE,(’)(r,v)vzdv

= \"ZTI NO’OFOV()UZdU = 47Tf FO’OUZdU, (14)
0 0
1 ( muo? 4wa m v?
U,== | =—fr,v)dv=—| Foo——v’dv. (15
N nf ) (r,v) n J, 00 5 v (15

06640

o 27 T
i :f vzdvj d(pvf sin Bvde,,BPi(cost)
0 0 0 2
0 |

X (e7i(e0¢) 4 ei(wvw))z E FLmle‘(COSﬁu)eim(‘pv_‘P)

1=0 m=—I 2im
4 ©
AT [ RelFy oo, (17)
3 ), :
4 0
jo=- —7TJ Im(F; )v3do, (18)
3 0 !
4 o0
j,= ?” F13d. (19)

0

In our special case of the axially uniform cylindrical magne-
tron discharge~, o andj, equal zero.

In a similar way one can find the higher-order macro-
scopic quantities responsible for the momentum and energy
flux transports. The nonzero components of the second rank

v
w - —|

tensor
l_[ = ’

Whose physical meaning is the tensor of anisotropic pressure

2
(20

or the traceless part of the momentum fiiixis the second

rank identity tensor in cylindrical coordinates have the fol-
lowing form:

II,, :maJ (v —V3)(r,v)dv

4o [

5

1
|:Rd|:2 2) - _Fz o:| maU4dU,
0 o3

A7 (%2
IL,,= maf (v,,— v23)f(r,v)dv = ?Wf ngyomav“dv,
0
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4 (|3 3 14
I, = maf (Vpp— v23)f(r,v)dv =-11,,—-II,,, WV ope = - {E Im(F33) + = Im(F3 1) + Im(Fl 1)]
0
2
dm (* mpu*°
Hw:nwzmaf U f(r,v)dv = —?“f Im(F, )m,vdv. X vidv,
0
The tensor of the isotropic pressure of particles is 4 (7| 4 7 v?
pie P P V= — { IM(Fa,p) + — |m(F11)} v3do.
UZ 47T 7 0 5
P=nm\ =1/}, Pi=—7 Foomav 4dv.
3 3 The tensor component¥;; do not change under permuta-

tion of indexes. Contraction of tens¢21) with respect to
any pair of indices gives zer®¥;, + Wi+ Vi,

The components of the tensd&)) and(21) appear in the
momentum and energy flux balance equations.

In the case of nonzero axial electric field and gradidot
instance, a magnetron discharge of finite length with the ends
closed by shields biased at the potential of the plasma or
cathodg¢ the componentsl,, andIl,, will differ from zero.

The third rank tensor
V. TWO-TERM APPROXIMATION

n
‘I’:Tmawvv—vz'V) (21 The well-known two-term representation of the phase
space distribution functiofi in cylindrical geometry
corresponds to the difference between the energy flux tensor F= o+ (Vo)1 = fo + U1+ vty + 0 Fa ),
V= m(vvv) (22) follows from Eqgs.(10) and (4)—(6), and property(11), with
2 the definitionsfo=Fqq, f1,=Re(Fy ), andfy,=-Im(Fy ).
and the tensolj ,, wherej, is the energy flux vector with the The passage to the limit of the two-term approximation can

components be easily demonstrated by settihg0, m=0 andI=1, m
=1 in Eq. (13). The equation for the isotropic part of the

jur = 4_77 3dv distribution function then becomes

ur 1]

3
0 [v(d, + 1/r) + a,(d, + 2Iv)(Fy 1+ F1 )/6 =Jq.
) * 3 At I=1, m=1,-1, andJ;=-vF;, (v is the collision fre-
Jupg =~ 3 o vodv, quency, Eq. (13) takes the form
(- ) [vd, +&d,]Fg 0= F i1QF; 41— VFy 4. (23
juz= ?TFJ Flvom;v v3dv. At =1 andm=0 we obtainF; (=0.
0

By extracting the real and imaginary parts from the com-
plex conjugate equation@3) and using the above defini-

The nonzero components of the third rank te are : . ; . ) .
P e tions, we obtain the following equations for the axial, azi-

_Am muth, and radial anisotropic parts of the distribution, as well
Wrr = 7JO [ Re(Fs9 - ¢ Re(F3 V- e Re(':l 1)} as the equation for the isotropic distribution function:
2 Q
><m v w3y, f1,=0, f1¢:;flf’
Aqr * _ 14 &fo &fo
‘I’rw:_7fo { Re(F35) + = Re(Fsﬂ‘_Re(Fm)} flr‘_Qz_l_Vz(UE*'arg ;
2
Ma? v3dv, E}ﬁ +ﬁii 2f J
3rar M 3¢2 e
A [ v2 s These equations coincide with the conventional ones used in
V= — RG(F31)+ Re(Fu) vodv, the (f,,f;) approximation for electrons in crosseg},B,
0 fields.
4o (| 3 1 7
Vo = - i 5 Im(F39 — = Im(F3 ) + |m(|:l ) VI. FOUR-TERM APPROXIMATION FOR ELECTRONS
5 Equations for the distribution function expansion coeffi-
% myv 3o cients in the multiterm approximation follow from the hier-

archy (13), with 1=0,1,2,3,etc., andm=-I, ... I. Trunca-
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(I=lhaxt1)-term approximation with all higher expansion A2f3+§UFErf5_§FEr
coefficients being set to zero.

Hereinafter, we consider the four-term approximation for
the electrons. The procedure for ions is analogous.

Electrons with the chargee-and massm, move in the Af, + E 29 _f - 3Gf (29)
radial potentiale(r)=ff (-E)dr from the cathode of radius P A
R to anode. The direction of their motion coincides with the
r-axis direction and is opposite to the direction of the field Adfo+ Udfs Uld 2 _ ﬂE(f 2 =Gf, (30)
E,. Equationg13) can be simplified by the transformation of 357 5 o T 10r2ar 2 10 2 YTV
the variablesv,r) to variables(e,r’), wherer’=r and the
total energy e=U+®(r) is the sum of the kineticU 3 J 9
=mw?/2 and potentiald(r)=(-e)¢(r) energies. Using the A1f6+gUﬁEf2f7— EGEE— Gfy, (31
transformation rules

tion of the infinite summation dat=I,,,, corresponds to the 6 14 ulyg ; E( (4 12f > 0
1 l ’

(28)

15,19, U dfe U dfs

=0 = Ao+ —U—— fg+—r——-—
O = d + @By, J, =My, 2771473 8 3 ar 7 oo
i i ici 1 15 2
we come to the fs?llowmg hierarchy for the coefficients E(_fe__f8+_f9> - _2Gt,, (32)
Fl,m(sar)ZZW(Z/me) Fl,m(var): 7 7
= Uu.,df;, eE
{u(a . m-1> o +2]F|+1,m Asfa+ T2 T+ tr= - 361, (33
o 2+3)" o
_ m-1) A =1]Fiin Agfo- 219 2 —f =-Gf 34
+ U(&r— ; ) +eE > _(2|—1)92 slo” Tor2ar 7T 7 5 (34)
M m+1 [+2] r:|+1 - Here we use the following designations for the real parts of
+|U{q + -eE : 3 the components:
2 |(21+3) - ~ ~
_ o Foo=f, ReF;)=f, RdF,,)=f,,
m+1 -1 F|_1m+1 0,0 0 d 1,1) 1 q 2,2) 2
LU\ e a-p ™ P 7 7
- ' 1 ) Fao=fs, ReF33=f; ReF3)=fs,
—i1Qm(mU2)Y2F, - S(F ) - (24)  and for the imaginary parts:
Here, the kinetic energW=¢-®(r) is the dependent vari- Im(Fy 9 =fg, Im(F;2) =1,
able, and the collision operato8=(m.U/2)Y/2J,. ~ ~
The hierarchy(24) should be converted then into a system Im(F3 3 =fg, Im(F3 ) =fq.

of equations written explicitly for required valueslodindm.

Equations for the indices and -m form complex conjugate The coefficientsh, (I #0) andG are defined by

pairs. By extracting the real and imaginary partsFof., S(EI,nD:_AITZI,m: Al(e,r) = UNQs(U),
from the pairs of coupled equations we obtain the following
system of equations for the functiofige,r): G(e,r) = (MU/2)Y%Q0, Q=-eBm,,
U1l g cE whereN is the neutral gas densita cold gas is being con-
———rf,-—f=%, (25) sidered, which corresponds to the low-temperature cylindri-
3ror 3 cal magnetron discharge in a gas floand the total cross
section is
g 3 .14 Uafy 3 =Q+Q¥+ Q. 35
Af +U—2+ —US—r?f,— ——2+ —eE(f; - 3f,) = Gf,, ©@=Q+Q7+Q (35
a5 ortar Sa 10 The collision operatos, involves elastic, inelastic, and
(26) ionizing collisions of electrons with atoms of an inert gas
and can be written in the form
15,10, U ifi U dfs S =5(fo) + o) + (o),
A2f2 3 f4 —— =
14 ar 3 ar T oorr where
1 15, 2 2
te éf1‘7f4+ ;fs =2Gfy, (27) o) = 2 [U NQY(U)fo(U,n)],

066406-6
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$fo) =~ UNQ*(U)fo(e.r)
+(U+ Uex)NQex(U + Ugdfo(e + Ugel),

S(fo) = = UNQF(U)fo(e.r)
+(UIB + UgNQU(UIB + Ug) fo(UIB+ Ug, 1)/ B
+(U/[1 - B1+ U NQU(U/L - BT+ Uy)
X fo(UI[1 - B]+Ug,n)[1 - B].

The cross sections appearing in E8p) and collision opera-
tors areQ, the generalized cross sections resulting from an
averaging of the differential cross sections over the solid
angle of scatteringQ, the momentum transfer cross section,
Q%% the total excitation cross section with the threshdlg,

and QY the direct ionization cross section with the ioniza-
tion potentialUg. The quantities3 and 1-8 denote the frac-
tion in which the remaining kinetic energy of the colliding
electron is shared in ionization event between the two out-
going electrons. Inelastic scattering is supposed here to be
isotropic. Superelastic collisions do not play a role because

PHYSICAL REVIEW E 71, 066406(2005

ed-o (V) D
Al fos™ I
! 1
0 ' i
:
f,f f '.
f, fs fs, f i
| fs’ fg |
-200 - ! |
| i
! :
3 .
£ ' 3
400d 8 I &
\c
| f— U=0, £ = eq(r) '
! !
i\ B !
-8004 | ;
1 2 3

of a small excited atom density.

To take into account the anisotropic scattering in elastic FIG. 2. Solution region of the system of equatid25)—(34) in

collisions the differential cross sections®(U,cosf) are

the variables total energy and coordinate. Distribution of the

needed. This can be simplified by assuming separation dfotential¢(r) is typical for the cylindrical magnetron discharge in
variables[18,19, according to which the differential cross argon at8=100 G.

sections

o®(U,x) = QS(U)RX)/(2m), x=cosh, -1<x<1,

dial coordinater is schematically shown in Fig. 2. The re-
gion is limited on top by the boundafy (e=«¢.,), where all
expansion coefficients of the distribution function become

are expressed in terms of the total elastic cross sectiofegligibly small; on the right by the lin€ (r=R,) corre-

QS'(U) and the scattering profilB(x)

_ 2
R(x) = i exp(— x foXC) )

_ ! _(X_Xc)2>
a—f_lexp< —xﬁ, dx.

sponding to the anode position; on the left by the boundary
A (¢>0) where the electrons are ejected into the plasma
from the cathode surface; and on the left and from below by
the curveB [e=®(r)] at which the electron kinetic energy
equals zerdU=0).

A half-space analysif20-23 has shown that, for multi-
term expansions, stable numerical solutions result when the
boundary conditions are applied alternatively at the anode

The valuest,=1 andx,=0.5 for the center and width of the and cathode, for functions with even and obldndexes.
scattering profile correspond to a considerable forward scafl"US, the boundary conditions for the functions with even
tering of electrons. The value,== describes the isotropic Ndexes(in our designations these afig f,, f3, f7) should be

scattering.

specified at the anode, and for the terms with bfitiese are

Under this approximation the generalized cross section§ f4 fs: fe: fe, fo) at the cathode and on the curige

are written in the form
1

QU) =Qu(U)(en/ay), an=1 —f R(X)Py(x)dx,

-1

whereP, are the Legendre polynomials.

VIl. BOUNDARY CONDITIONS
The system of equation®5)—(34) for the distribution

The anode boundary conditions must provide a transition
from the positive column to the equipotential anode. Condi-
tions at the absorbing surface for expansion coefficients re-
sulting from the spherical harmonic decomposition of the
distribution of neutrons in the medium surrounding “black”
sphere were first obtained by Marsh&@d]. The main ideas
proposed by Marshak are that the hierarchy should be trun-
cated at odd indices, since the even approximations contain
singular parts which have no clear physical significance; and
that the boundary conditions at the absorbing surface in the

function expansion coefficients should be supplemented bjtterm approximation should follow from the corresponding
the relevant boundary conditions that correspond to the proledd velocity moment of the distribution function. Multiterm
lem specifics and reflect the processes at the boundaries sfudies[25,26 of the electron distribution function in the

the solution region.
The solution region of systert25)—(34) for the cylindri-
cal magnetron discharge in the plane total energynd ra-

anode region have contributed significantly to the field.
Following [26], where the plane anode region was studied
by a multiterm Legendre polynomial expansion, we develop
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9, i =-&rf
D - on cosfiicietrunning be-
S with the values of the reflection coefficiegtrunning be
tween zero and unity.
A Hereinafter for simplicity reasons all electrons having

reached the anode are assumed to be absorbedgl, #6.and
reflection coefficieng&=0. Applying this absorption require-
ment to each energy of the integrand we obtain the following
boundary condition for the expansion coefficients in the two-
term approximation

FIG. 3. Spherical coordinate®, 6,,¢,) in velocity space and

[
cylindrical coordinateqz,r,¢) in configuration space. Figure on E E %y(kl)aﬂ(ﬁk: 0, (36)
the right shows the plane=const. Shaded area of the smaller circle 1=0 k=1 2
corresponds to the anglgs at which the particle flux goes away
from the anode. where

o+37/2
a method to deduce the boundary conditions at the radial 7(k1)=f (eDlee) 4 glkiDie,-e)yqg, |

absorbing boundary of a cylindrical plasma, for the multi- g+ml2

term spherical harmonic representation of the phase space

distribution function. Relations for the expansion coefficients
P = f P1(x)PK(x)dx.

at the anode boundary were derived in R@6] by decom- au = i

posing the particle fluxe@nd higher odd velocity moments
into elementary microscopic fluxgsnoments, directed to- The condition(36) in the conventional two-term approxima-
ward and away from the anode surface. The reflection cortion reads
dition applied to these microscopic fluxes resulted in a cou-
pling of the functions with even and oddindices, thus E :2 Re(Fy )
yielding the required boundary conditions. 007 3 Ly

At first, the procedure to deduce the boundary conditions = ) ) ) )
at the anode will be demonstrated for the first velocity mo-Similar relationships have been obtained in many two-term
ment that corresponds to the radial flux density of electronsStudies(e.g.,[27-29). -
The radial flux density determined by Ed.7) can be repre- To obtain the boundary conditions for the four-term ap-
sented as a sum of the microscopic flux densities directeBroximation one must consider, in a similar way, the radial
towards and away from the anode. To obtain these fluxes ifomponents of the third velocity moment given by the com-

cylindrical geometry a reference to Fig. 3 is useful. ponents¥ ., ¥, and ‘T’,ZZ of the energy flux tensor22)
It is seen from Fig. 3 that the electron flux toward the

anodej; is limited by the anglesp, in the range of the ¥ ='T_‘ef £(r V)dv

differenceq, — ¢ from —7/2 to 7/ 2, and the flux going away k= | Urkk (rvjdv,

from the anodg, is given by the angleg,— ¢ in the range o Iy r
from 7/2 to 3m/2. The corresponding microscopic particle WNEr€vmr Zvr, vrpe =010y, Uiz =005

fluxes can be calculated as From the requirement of complete absorption of the en-
ergy flux tensor radial componentg =0, ¥ =0, and
N +3mi2 T W.,,=0 it follows that
ir=| vl de, | sin6,dé,
0 @rml2 0 I 1
- ! S S galod s HPR=0. (7
X > > F m(r,v,t)P!m‘(cosav)e'm(“’v“")ﬂ, =0k
1=0 m=—l 2m
|
1
> 2 a0 = WF=0, (38)
% grml2 m 1=0 ke—I 2
j:=J vrvzdvf d(pvf sin 6,d6,
0 o—l2 0 |
1
o | oMk 3k —
. 1 > X S (arf - a3119F = 0, (39)
X > > F|Ym(r,v,t)P!m‘(cosav)e'm(‘Pv"“’)ﬁ. 1=0 k=-1 gl Tk T
1=0 m=-1
where
In the case of a partial absorption of electrons by the anode @ +3ml2
surface these microscopic fluxes are related by the reflection Y = f (k@) 4 dk+3(e,meNdg |
condition o+l2
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TABLE Ill. Coefficients vy, in the boundary conditions 8 8 12
(37)+(39) and (41). f,=- 1—5f6 + 3—5f9 - 7f8. (42)

k -3 -2 -1 0 1 2 3 The boundary conditions at the anode surface written in the
yf(l) 0 —4/3 - _4 - —4/3 0 formh 01:c Eqgs.(40) and(42)' for 'Fhe funct|0nshW|th (lavghmdeﬁl'

) 125 0 43 0 _12/5 in the four-term a_p_prOX|mat|0n ensure the solution _sfta ity
Yk m 77 and smooth transition from the inhomogeneous positive col-
E(kl) 0 -8/3 - 0 77 8/3 0 umn to the equipotential anode.

B 8/5 0 0 0 8/5 T The presence of the axially directed electric field gener-

ates the particle fluxes along tlkeaxis. In this case the ab-
sorption or reflection conditions should be also set for the

! axial tensor component®¥,,, V,.., ¥, and¥,,,. In the
a3'= f PSCOPI(x)dx. next six-term appeoximati(z)zﬁ for the distribution function the
-t boundary conditions at the anode should be derived from the
After substitution Ofﬁ’(kn) (cf. Table Ill) anda™ (n=1,3) (cf. ~ reflection requirements for the fifth order velocity moment.
Table 1V) in Egs. (37)<(39) and cancellation of terms con- '!'he boundary conditions on the cathode side can 'be set by
taining the imaginary parts d ., the boundary conditions Varous methodde.qg., [23,25,30). The two boundaries\

for the functionsfy=Fg o f,=REF, ), andfs=F, , take the and B specified in Fig. 2 are to be considered here. Condi-
representation ~ = ’ tions on the boundanA (¢ >0) correspond to the distribu-

tion of electrons ejected from the cathode. These electrons

8 12 6 are assumed to form a high-energy beam with anisotropic
fo=1efit 3efs = fa distribution f,(U)=Re(F; ))=exg~(U-U,)2/(8U)?] with a
center at the energy,, and width 8U. The values of the
anisotropic functionds, f,, fs, fg, andfg should be chosen
f,= ifl_ if5+ 1_8f4, consistently with the system of equations. This consistency
15" 35 7 can be reached in the simplest way, by settipg0, f5=0,
fg=0, fg=0, and
4 12, 6
fo==fi+ s+ 1 (40) ¢ o (MU0
°NQUU

Notice that the conditior§36) holds too.
The boundary condition for the imaginary part of the term
f;=Im(F,,,) follows from the absorption requirement for the

valid along with the additional conditiofi,=0. Conditions
on the potential curve whetd=0 (¢ <0) can be derived by
analyzing the system of equations in the lirbit—0. This

third rank tensor component ., =W, in the form analysis shows that all anisotropic components must turn
L into zero on the boundar® (Fig. 2): f;=fg=f,=f5=fg="q
L 3k=(3) (1) _ =0. However, an employment of the additional requirement
g kzz_, K O+ NAF=0, “D f;=0 can be useful to ensure the solution’s stability under
nonzero magnetic field conditions. The reason is that the
where functionsfg, fg, andfy in the vicinity of zero kinetic energy
o3l vary approximate_ly §13vU‘1 leading to quipk accumulatio_n
3’(kn): j (kle,-e) ei('””)(“v“"))dcpv. of small discretization errors present in any numerical
e+ml2 scheme.

The balance equations for particle number, energy, and
Cancellation of the real parts in E41), followed by the  momentum will be considered in the following paper, as well
substitution of the corresponding coefficients listed in Tabless calculations of the isotropic and anisotropic parts of the
[l and 1V, results in the relationship distribution function. These and the calculation of additional

TABLE IV. Coefficientsamk in the boundary condition€§37)—39) and (41).

o& o &
1=0,k=0 2 w2 0 4 457/8
=1,k=1 wl2 4/3 -7/16 97/ 8 16
1=2,k=0 0 -/ 16 2/5 -4/5 -45r/32
1=2,k=2 4 9/ 8 -4/5 48/5 22%/16
[=3,k=1 0 0 21w/ 64 -9m/32 -48/7
=3,k=3 457/ 8 16 —-457/32 2257/16 1440/7
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macroscopic quantities will be illustrated on concrete ex- APPENDIX
amples of real operating conditions for cylindrical magnetron

. In this section we prove mathematically the possibility of
discharge. P y P y

representing the coefficienf%'q) of the spherical harmonics

expansion2) in the form of Eq.(9) for cylindrical discharge

in electric and axial magnetic field. Then, the expansion co-

efficientsF, ,, will be shown to have propertig¢d1) and(12).

. . We assume rotational symmetry about the axis of the cyl-
In this paper we have Qeveloped a nc_)nh.ydrodyn:_am@nder, that is, the azimuth gradients and fields are identically

method to treat the anisotropic electron distribution functlon%ero_ In addition, we assume that the spatial gradigntse

VIll. CONCLUSION

in crossed electric and magnetic fields in the presence roduced by the electric field. In other words, the plasma

spatial inhomogeneities. The method is based on the sphetiznnat he inhomogeneous in the direction in which there is

cal tensor dec_ompo_sitio[rll,lz,lﬂ of the phase space dis- ,; 5.celeration of particles due to electric figddg.,d,=0, if
tribution function with further employment of the specific ¢ =0)
,=0).

properties of tensor expansion coefficieffib] resulting

from the_ cyllndrlcal' symmetry of 'the dlscharge. Thg syste 11,12 is based on the possibility of representing any tensor
of equations describing the spatioenergetic evolution of thgy . :
by a sum over all possible convolutions of tensors formed

distribution function expansion coefficients from cathode tofm the ind dent directi . " Th W
anode in the cylindrical magnetron discharge is obtained, 0™ 1€ Independent directions in a system. here are two

The problem of appropriate boundary conditions at elec_:cndlgpgndtehnt dlreftlonsfdet?rrglne? g.y erllectrlc ?_r;]d m?grtu?tlc

trodes is considered for cylindrical geometry with respect tof!eldSE'(n )eh Sys e'ml 0 dCY'g_ rl'Ca Isc artge. e ?I ec mij

even and odd distribution function components written in the'©'d £, 2) has axial and radial components generafly, an
s direction varies with the radial and axial positions. It is

spherical tensor notation. The boundary conditions ensurir;ké fent to think that the electric field d ¢
the solution stability and satisfaction of particle, energy an onvenient to think that the electric Tield produces two or-
ogonal independent preferential directioks and E,,

momentum balance equations are derived at the anode B hich i q ith th el tudeEofind
considering microscopic fluxes of velocity moments directe ich In accordance with the particular magnitude=pian
toward the anode. , combine at every poinfr,z) to give oneE(r,z). The

An important requirement of decomposition methods is &lI'€ctionsE, and E; remain independent of position. The
formulation of the simplest possible system of equations!“agnet'c field determines then the third direction. According

which would give an adequate description of the object orfo Ref. [12}, the tensor. coefficients can be represented quite
the one hand and could be relatively easily solved analytigenerally in the following form:

A general method to find the tensor coefficien‘l%

cally or numerically on the other hand. The multiterm treat- © e e w

ments of the electron distribution anisotropy using Cartesian f=> > > > f(ILAN AN\

tensors become especially awkward in the presence of the A=0 \’=0 \"=0 \""=0

magnetic field. The generalization of the spherical tensor de- e\ O V) v B
composition[15] developed in the present paper for the X [[YMU(EY, YME)IN YN (B, (AL

crossed electric and magnetic fields possesses an elegance — Sy - . .
and physical transparency. The resulting system of equatior}’ﬁeref(I AN AT ) are scalar coefficients. Parity consid-

for calculations of the distribution function expansion coef-e€rations requiréf(l,\,\",\",\")=0 unless

f|C|ent_s can be easily obtained from the g_eneral hierarchy and N+ ) +1=even. (A2)
contains a reasonable number of equatiti® 21, and 36
equations in four-, six-, and eight-term approximations, redt follows, for B andE, directed along the axis, that
spectively. Since the presence of a magnetic field reduces

L . . . K M\ RY — AN "
the distribution function’s anisotropy, convergence is ex- Y, (B)= (=N [(2N" + 1)/4m] 28,1,
pected to be reached by the six-term approximation, even for
the case of strong electric and weak magnetic fields. Thus, Yifw)(Ez) TN 1)/477]1/25”/110_

the appropriate and detailed description of the near-electrode
regions in weak magnetic fields when the anisotropy is notUsing the tensor coupling rul@.g., Eq.(9) in [11]) we ob-
negligible, can be obtained without use of the PIC MCCtain the following representation:
methods. A similar method can also be applied to describe v w o w
anisotropy phenomena in a cylindrical dc discharge in an 0 _ r PN WY (— YN
axial magnetic field. fm ‘E)X,EZOEOEO“(""'K NN
X (N"OAmMN m)(N M\ 0]Im) YN (E,) . (A3)
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Yﬁ]’;)(a, ©) =(-D(- i)'”‘NLme"im‘PP‘{n‘(COS9)U|,)\,\m\, Second,_ the assqciated Legendre fu_nction pro;{g@.,
Eq. (A2) in [15]] imposes an additional condition at
whereo,, | is @ scalar factor, which does not influence the g=7/2 for the fieldE,,
symmetry properties; the angl@sand ¢ specify the direction
of vectorE, in the spherical basif, 6, ¢), associated with
the cylindrical basigz,r,¢), apparentlyd=m/2. By substi-
tuting this relation into Eq(A3) we see

A+ m=even. (A5)

In the absence of the axial electric fielj=0, \"’=0, con-

=N, F) e ™ o , :
m = Lmtlm ' ditions (A2) and (A5) combine to form the constrairil2).

with the expansion coefficients Thus, with reference to the axially homogeneous cylindri-
_ cal magnetron discharge in crosgedandB, fields (Fig. 1),
Fim= > fl\, .o N0y (= D= i) A the expansion coefficients, ,, possess the properties speci-
AL\ fied by formulas(11) and(12).

m , . m The presence of the axial electric field destroys the con-

X (NONMA"m)(nmA O|Im)P|>\ '(cosa). (Ad) straint (12). In the case of only axial electric and magnetic
The equality(A4) results in a series of important proper- fields, i.e., alh=0 andm=0, the coefficientéﬂf in Eq. (A3)

ties for the coefficient§, ,, and the phase space distribution become real functions with oriendex, i.e., the limiting case

function (10). for the plane parallel geometry is realized. The distribution
First, symmetry properties of the Clebsch-Gordan coeffifunction here is independent of the magnetic field strength.

cients(e.g., Eq.(10) in [11]) require the complex conjugation At B=0, \"=0, condition(A2) forces In{F, ) =0 indepen-

of the coefficients, ,, andF, _, [see Eq(11)]. dently of the electric field configuration.
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